
This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

Tools for Forging the Functional Architecture

Andreas Korff
1
, Jesko G. Lamm

2
, Tim Weilkiens

3

1
Atego Systems GmbH, Major-Hirst-Str. 11, 38442 Wolfsburg, Germany,

andreas.korff <atsign>atego.com

2
Bernafon AG, Morgenstrasse 131, 3018 Bern, Switzerland,

jla <atsign> bernafon.ch

3
oose Innovative Informatik GmbH, Straßenbahnring 7, 20251 Hamburg, Germany,

tim.weilkiens <atsign> oose.de

Abstract: Functional Architectures enable modeling systems independent of their

target technology. Their systematic modeling requires several steps, some of them

being trivial, because their result is determined by general rules. If it is possible to

automate these steps, the Architect will be able to stay focused on those activities

that require his expertise. This paper uses SysML models in Artisan Studio® as an

example for showing how certain steps in the creation of functional architectures

can be automated or facilitated. These steps do not only involve creating functional

blocks from activity trees, but also establishing links between the SysML model

and existing models in the enterprise, which may for example have been created

with the Simulink® software.

1 Introduction

System architects shape the system and establish links between the different involved

technical domains. To describe the system in a way that is independent of its target

technology and thus easy to re-use, they may use functional Architectures [LW10].

These require abstract thinking skills [Wei11] and, as a result, the architect has to

translate the functional Architecture into the views of the different technical domains.

It is a known approach to create subsystems from certain technical domain with model-

based tools like e.g. the MATLAB®/Simulink® [VD06] software, which can be used for

functional modeling of systems. The challenge now is to find tools that support the

Architect with his holistic task, allowing him to stay focused on his translator role

instead of being distracted by trivial modeling activities. Tool support should relief the

Architect from recurring, monotonous activities and facilitate the transition into models

of the different technical domains.

To explain the issue with recurring, monotonous activities, let us report an observation

from a project dealing with hearing instrument technology: while the method from

[LW10] was applied, it was noticed that there was a 4 man-hours effort for carrying out

and reviewing activities with a predefined flow that was given by the methodology. The

stated effort was more than 5% of the project’s total architectural modeling effort (the

data is based on a retrospective analysis of the project by two of the authors who were

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

part of it). Accordingly, we expect that time can be saved with an approach of automated

modeling, not only because model creation will be faster, but also because – once the

tool has been verified – it should be possible to reduce reviewing effort due to fewer

manual steps involved.

In this paper, models of functional architecture in SysML [OMG10, Kor08a, Wei08] and

functional models based on the Simulink® software are used to demonstrate the use of

modeling tools in assisting the creation of functional architectures and their linking with

existing models. Instead of emphasizing the methodology behind the modeling of

functional architecture [LW10], this paper focuses on the efficient use of the

methodology with modeling tools. We describe a new concept for automating certain

activities of the architect, but also base our work on existing ways of interlinking SysML

modeling tools with the Simulink® software [VD06, Kor08b].

2 Method for creating functional architectures

This section introduces an essential concept behind this paper: the method for creating

functional architectures from [LW10].

Use cases are the key to obtaining the functional architecture. They represent the

services the system offers as seen from outside. Within a framework of functional

requirements analysis like SYSMOD [Wei08], one can identify all use cases necessarily

needed around a product. Then the details of each use case can be defined by an activity

diagram (figure 1). The actions within an activity are the functions of the system. The

decomposition of an activity into called activities and the outgoing and incoming objects

(object flow) determine the functional architecture.

From the activities, one can obtain activity trees (also called “function trees” in the

literature – [Wei08]
 1

, for example). The main activity of each use case is the respective

tree’s root, and the hierarchy within the tree (figure 2) has call semantics, meaning that a

node or leaf in the tree represents an activity that is called within the context of its parent

node. Furthermore, each activity has associations with the types of its incoming and

outgoing objects.

Multiple activity trees result from the complete set of use cases for the system. The

architect decides, based on his expertise and on Heuristics [LW10], how activities can be

assigned to clusters of high cohesion. These are functional groups to be represented in

SysML by functional blocks. The functional blocks together represent the function

structure (figure 3), whose hierarchy has containment semantics. This means that a

functional block is a part of its parent if its functions are subfunctions of its parent. At

the root of the function structure, there is a special functional block, which represents the

whole functional architecture.

1
 [remark of the translator: the English term “function tree” was taken from an English

edition of the referenced book: Weilkiens, T. Sytems Engineering with SysML / UML,

Morgan Kaufmann OMG Press, 2007]

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

The function structure defines the elements of the functional Architecture. To describe

the inner structure of a functional architecture, internal block diagrams are used

(figure 4). Two functional entities are connected in an internal block diagram if their

functions exchange data. The data flow can be specified in more detail by ports

(figure 4).

3 Example

To demonstrate how a tool can support carrying out the described method, we use a

sample system from [LW10], a hearing instrument that is fictitious, because it is

simplified compared to the state-of-the-art. It is subject to two use cases (figure 1):

 “Listen to Amplified Signal”. The hearing instrument user has the hearing

instrument amplify sounds from the environment in order to listen to the result.

 “Adjust Volume”. The hearing instrument user changes the volume, eventually

more than once, until the perceived level is comfortable.

In the following, a demonstration of tool use will show an application example: the

creation of the system’s functional architecture based on the two described use cases

with support by the tool.

4 Automatic creation of functional architectures

Here is our proposed procedure for the automatic creation of functional architectures:

 Activity diagrams are used for modeling the different activities within each use

case. A partition with the stereotype “«I/O»” (figure 1) takes those activities

that involve interfaces with connections outside the system (according to the

heuristic one functional group takes the functions that are related to system

actors [LW10]). From a formal point-of-view, activities are only allowed in the

I/O partition if they have input and / or output pins providing object flows with

external actors. A resulting recommendation is to divide an activity into several

ones if it models more than just the interaction via an interface. Then, the

interface-related part should be separated from the rest (e.g. divide an eventual

activity “Amplify Sound” into the ones we chose here: “Apply Amplification”

and “Output Amplified Signal”).

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

Figure 1. In refining use cases (a) by activities (b, c) these have to be placed in a partition

with streotype «I/O» if they involve interfaces with connections outside the system

 The Architect defines the root activities of the activity tree (e.g. by dragging

them into an empty diagram) and has the tool create the complete tree structure

automatically. The tool also groups activities from an “«I/O»” partition

automatically: it automatically connects them with a constraint (figure 2

without the elements marked by black ellipses). The SysML language lacks an

element for grouping arbitrary model elements. OMG’s SysML working group

is currently working on a solution. Our favorite solution from the current

discussion is a specialization of the constraint element [OMG09]. Even if there

is no official standardization, this solution is formally correct and can be used

right now. Therefore, we propose to use constraints as a means for grouping

activities in our procedure. The tool needs to know which activities to take into

account. This could be solved by having the Architect apply a special

stereotype to those activities to be accounted for. In the example given here,

however, the tool worked according to a more simple approach: it accounted for

all activities within the current diagram.

a b

c

uc [Package] Use Cases [Högerät]

Hearing Instrument User

Adjust Volume

Listen to Amplified
Signal

«continuous use case»

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f
th

e

S
y
s
te

m

l2 : Volume Setting

l1 : Volume Setting

: Operate Volume Control

a1 : Audio Signal

a2 : Audio Signal

: Judge Volume

v : Gain Change

l : Volume Setting

: Compute Gain Change

a : Audio Signal

v : Gain Change

: Apply Gain Change

Adjust Volume

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f
th

e

S
y
s
te

m

l2 : Volume Setting

l1 : Volume Setting

: Operate Volume Control

a1 : Audio Signal

a2 : Audio Signal

: Judge Volume

v : Gain Change

l : Volume Setting

: Compute Gain Change

a : Audio Signal

v : Gain Change

: Apply Gain Change

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

l2 : Volume Setting

l1 : Volume Setting

: Operate Volume Control

l2 : Volume Setting

l1 : Volume Setting

a1 : Audio Signal

a2 : Audio Signal

: Judge Volume

a1 : Audio Signal

a2 : Audio Signal

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f
th

e

S
y
s
te

m

v : Gain Change

l : Volume Setting

: Compute Gain Change

v : Gain Change

l : Volume Setting a : Audio Signal

v : Gain Change

: Apply Gain Change

a : Audio Signal

v : Gain Change

act [Activity] Adjust Volume [Adjust Volume]

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f

th
e
 S

y
s
te

m

a1 : Audio Signal

a2 : Audio Signal

: Get Input Signal

a1 : Audio Signal

a2 : Audio Signal

: Output Amplified Signal

a1 : Audio Signal a2 : Audio Signal

: Apply Amplification

Listen to Amplified Signal

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f

th
e
 S

y
s
te

m

a1 : Audio Signal

a2 : Audio Signal

: Get Input Signal

a1 : Audio Signal

a2 : Audio Signal

: Output Amplified Signal

a1 : Audio Signal a2 : Audio Signal

: Apply Amplification

«
I/
O

»

I/
O

 F
u
n
c
ti
o
n
a
lit

y

a1 : Audio Signal

a2 : Audio Signal

: Get Input Signal

a1 : Audio Signal

a2 : Audio Signal a1 : Audio Signal

a2 : Audio Signal

: Output Amplified Signal

a1 : Audio Signal

a2 : Audio Signal

O
th

e
r

F
u
n
c
ti
o
n
a
lit

y
 o

f

th
e
 S

y
s
te

m

a1 : Audio Signal a2 : Audio Signal

: Apply Amplification

a1 : Audio Signal a2 : Audio Signal

act [Activity] Listen to Amplified Signal [Listen to Amplified Signal][HI]

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

 By continuing the grouping of activities that has been initialized automatically

according to the previous step, the architect manually completes the assignment

of activities to functional groups by connecting all activities that should belong

to one functional group with the same constraint object, for each group

respectively (figure 2, including the elements that are marked by black ellipses).

In this step, only leaves of the activity trees are assigned to different groups.

The remaining nodes, including the root of the tree, are assigned to one

“system” group. At the end, the assignment of activities with constraints shall

define a disjoint decomposition of the set of activities from all trees. According

to section 2, also associated data types are visible in the activity tree. These

have been omitted in figure 2, with benefits regarding the figure’s clarity. It

should be noted that it is not possible in all tools to display associated data

types.

 The tool automatically creates one functional block per constraint, as the basis

for functional architecture (figure 3). This can be done via the use of model

transformation languages (e.g. according to [Alt09]) or via proprietary

automation means of the tool (which is the approach we used here). The tool

automatically connects each new functional block with the constraint from

which it has been derived. This is done with a “«trace»” relationship. To carry

out the described step, the tool needs to know which constraints to account for

and below which element to create the new blocks. While the latter information

should be entered by the Architect based on a user prompt appearing at the

beginning of the transformation, the constraints to account for should already

have been marked during modeling: a special stereotype can be assigned to

them. In the example shown here, however, a straightforward approach was

used for the sake of simplicity: a constraint has been accounted for, if it was

visible in the current diagram.

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

Figure 2. Constraints define the functional groups in an activity diagram

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

 Figure 3. Automatically created blocks of functional architecture and (here: manually created)

composition relationships in a block definition diagram

Figure 4. Manually post-processed functional architecture in an internal block diagram

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

 The architect manually post-processes the functional architecture and refines it

(figure 4). While doing so, he can update the constraints that have been used for

grouping activities, but he can also delete them (“Discard Temporary Models”

[Amb02]).

If functional models have already been created in some of the different technical

domains, these can be integrated into the model. This will be described in the next

section.

5 Linking to existing functional models

The functional block “Apply Default Amplification” could typically exist in the case in

which it would be known as a separate entity from earlier versions of the system

(heuristic use grouping criteria of existing groups [LW10]). In such cases, the

practitioner sometimes has functional models of such blocks in place, e.g. within the

Simulink® software. Figure 5 shows a corresponding model of the block “Apply Default

Amplification”. The system architect should re-use such models instead of again

modeling the functionality. Figure 6 shows an according way of linking the example

model from figure 5 with the SysML model we have described here.

Figure 5: A functional model of the block „Apply Default Amplification“, designed

according to [Sch05] and created based on the Simulink® software.

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

Bild 6: Linking a model originating from the Simulink® software with the functional

block “Apply Default Amplification” of the SysML model

6 Discussion, conclusions and outlook

Like the blacksmith, forging the steel in the first place instead of putting focus on

lighting the fire in the smithy, the architect should forge the system and needs tools that

relief him of trivial but error-prone steps of modeling. UML/SysML tools like

Artisan Studio® enable an implementation that carries them out automatically, based on

extending the range of offered functionality with appropriate features that provide more

than just the automatic creation of diagrams. Care has to be taken that the justification of

automation is not in the automation itself, but that automation helps saving time and

avoiding errors that result from error-prone modeling steps. The more experienced the

architect is with the modeling methodology, the more steps in modeling he will perceive

as an undemanding, industrial activity that lacks the need for creativity. As a

consequence, the amount of automation should increase with growing experience of the

architect. Therefore the following paragraphs will outline a way of automating the

creation of architecture more than shown so far.

Interfaces in functional architecture (ports and their connections in figure 4) can be

created with tool support, because interfaces between functional blocks depend on the

object flows in the underlying activity diagrams. The tool can verify by itself if there are

object flows between activities behind different functional blocks and if there are, it can

suggest creating an interface between the corresponding blocks. The architect should

then verify if the object flows are actually within the scope of the considered system or if

they are a side effect (e.g. resulting from the re-use of activities across multiple system

models). Furthermore, the modeling of object flows within use cases but also inbetween

them needs to be complete as a condition for the correct automatic creation of interfaces.

Therefore another kind of automation may be considered: automatic reviews. Instead of

providing scripts that change the model and leave the architect with changed reality he

has to verify afterwards, the tool can automatically check the model and give the

architect plausible advice for his next steps. For example, an automatic review could find

activities that are located in «I/O» partitions but have neither input nor output pins. The

existence of such pins would indicate that the model could not be complete enough for

This is an English translation of a German conference paper presented at the 2011 conference of the German “Gesellschaft

für Systems Engineering e.V.”. Please cite this document as follows: “Korff, A.; Lamm, J. G.; Weilkiens, T., Werkzeuge für

den Schmied funktionaler Architekturen, Tag des Systems Engineering, November 2011. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering has been made for the German source of this

translation. This translation is provided with kind permission of Gesellschaft für Systems Engineering. When using this material,

always make reference to “Tag des Systems Engineering 2011” (see box in header). ©

automatic creation of the architecture model and that extensions of the activity model

should be made to provide the missing input and output pins.

7 Acknowledgments

The authors like to thank The MathWorks, Inc. for supporting this work.

References

[Alt09] Alt, O. Car Multimedia Systeme Modell-basiert testen mit SysML. PhD thesis, TU

Darmstadt, 2008. Vieweg+Teubner, 2009.

[Amb02] Ambler, S. W. Agile modeling. John Wiley, 2002.

[Kor08a] Korff, A. Modellierung von eingebetteten Systemen mit UML und SysML, Spektrum

Akademischer Verlag, 2008.

[Kor08b] Korff, A. Drei Use Cases zur Kopplung funktionaler und Systemmodelle. Tag des

Systems Engineering. Bremen, Germany, November 2008.

[LW10] Lamm, J. G. and Weilkiens, T. Funktionale Architekturen in SysML. In M. Maurer

und S.-O. Schulze (eds.), Tag des Systems Engineering 2010 S. 109–118. Carl Hanser

Verlag, München, Germany, November 2010.

[OMG09] OMG Issue Nr. 13928. http://www.omg.org/issues/issue13928.txt (visited May 18th,

2011)

[OMG10] Object Management Group (OMG): OMG Systems Modeling Language (OMG

SysML™) Version 1.2. OMG Document Number formal/2010-06-01, 2010.

[Sch05] Schaub, A. Digitale Hörgeräte. Median-Verlag, Heidelberg, Germany, 2005.

[VD06] Vanderperren, Y. and Dehaene, W. From UML/SysML to Matlab/Simulink: Current

state and future perspectives. In Design, Automation and Test in Europe, 2006.

DATE ’06. Proceedings, S. 1. 2006.

[Wei08] Weilkiens, T.: Systems Engineering mit SysML / UML. dpunkt.verlag, 2008.

[Wei11] Weilkiens, T. Zukunftsdisziplin Modellbasiertes Systems Engineering. in: 8.

Paderborner Workshop “Entwurf mechatronischer Systeme”, HNI-Verlagsschriftreihe,

vol. 294, Heinz Nixdorf Institut, Paderborn, Germany, 2011.

http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt
http://www.omg.org/issues/issue13928.txt

