
This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

Functional Architectures in SysML

Jesko G. Lamm1, Tim Weilkiens2

1 Bernafon AG, Morgenstrasse 131, 3018 Bern, Switzerland
 jla <atsign> bernafon.ch

2 oose Innovative Informatik GmbH, Straßenbahnring 7, 20251 Hamburg, Germany
tim.weilkiens <atsign> oose.de

Abstract: Functional Architectures enable re-use of concepts across multiple
generations of technology. This paper shows how to create Functional
Architectures in SysML. We give examples of architectural models in SysML
resulting from a modeling approach that has been successful in several projects of
the authors, amongst others in the hearing instrument domain.

1 Introduction

A function for producing sound was present already in old days‘ grammophones. Their
horn is no longer a state-of-the-art technology, but the related function “Amplify Sound”
is still relevant. Modern hearing instruments, for example, provide this function, not with
a horn, but rather with microchips and small-sized electroacoustic transducers with
dimensions in the order of magnitude of very few millimeters. This example shows:
Describing products by their functions will lead to concepts with higher lifetime than
will an approach that depends on a certain technology. A functional view also enables a
deeper insight into the system [Ack81, Hit07].

In system architecture, this is a reason to use functional architectures. This paper
introduces functional architectures and presents a method for creating and modeling
them. This is done using [OMG10], the international Standard OMG Systems Modeling
Language (SysML), because it has been successfully applied and is supported by
currently available modeling tools. All figures in this paper are SysML diagrams.

We have observed the need for function-oriented development of systems, and we like
this paper to show how to address it and integrate the solution in a typical Systems
Engineering model. We furthermore like to point out how functional architecture can be
interlinked with the classic elements of Systems Engineering, like requirements or
physical architecture.

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

2 Terminology

Whereas physical elements exist in the real world, functional elements are abstract and
can only materialize within a model of a system. Functional elements transform modeled
entities / quantities like e.g. information, signals, materials, force or energy [Pat82,
Ulr95]. Functional elements have different names in literature, for example “functional
element” [YW07], “function” [KMN+00] or “system block” [BFN05]. Hence, it is
necessary to define terms carefully. The definitions used in this paper have been
summarized in table 1.

Functional elements can be decomposed into sub-elements. Similarly, their functions can
be decomposed into sub-functions. We call the corresponding activity functional
decomposition and its result the function structure. Function structures are hierarchical.
Their topmost level of hierarchy depends directly on the user [Spi02] and is closely
related to use cases. Not all approaches of functional system description have this
topmost level of hierarchy.

The concept of functional decomposition can be found in various pieces of literature
[PBFG07 p. 170 and following] [Eis05, p.145-146] [Spi02] [Pat82, p.66; p. 199 and
following]. The cited material differs in background. This is why the next section will
cover approaches that are compatible with the current context of functional architectures.
Where possible, make reference to the corresponding literature.

Table 1: Terminology

Term Definition

Function Input/output relationship [PBFG07, Pat82] of a
functional element.

Functional element Abstract system component that defines a relation
between at least one input and at least one output by
means of a function.

Functional block Model element that is supposed to represent a
functional element in the model.

Functional unit,
functional group,
sub-function,
sub-element

See the corresponding roles that are assigned to
composition relationships in figure 4.

Function structure The hierarchical structure that results from
decomposing functions into sub-functions and from
decomposing functional elements into sub-elements.

Architecture Description of the system under development that
provides structured views on it by identifying its
elements and relating them to each other.

Functional Architecture Architecture based on functional elements.

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

3 Method for Creating Functional Architectures

The method describes the steps involved in moving from system requirements to
functional architecture. It is independent of the used modeling language. However,
dealing with functional architectures requires a language that supports multiple levels of
abstraction and different views on the model. We have chosen the SysML language,
because it meets these requirements.

3.1 Overview

Figure 1 shows how to proceed: requirements are identified and refined by use cases in
SysML, as shown in figure 2. Modeling the activities then adds more details to the use
cases [Wei08]. A model of the system’s functional architecture now results from
grouping activities of the use cases into functional elements.

Note that figure 1 only shows an idealized flow, whereas the practical application of the
method will typically come with a different sequence of steps, each of them typically
being performed more than once instead of being completed at once.

3.2 Identifying Functional Requirements

Functional requirements about the system under development are the most important
input in creating a functional architecture. To identify and specify them, there are
different methods, whose choice is independent of the intention of creating a functional
architecture. Find a procedure for describing requirements in SysML in [Wei08].

Figure 1: Method overview

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

Figure 2: Use case model from the hearing instrument domain

By describing use cases and the flow of activities, the method establishes a transition
from requirements like “The system shall provide <xyz>” to functional architecture.
Functional requirements are refined by use cases. These provide a view on the functions
of the system that is focused on the actors, i.e. those elements that are outside the system,
but interact with it. Of course this includes particularly the (human) users of the system,
but also external systems. Use cases are a wrapper around the system’s functions,
defining the preconditions and post-conditions as well as trigger and result. SysML
activity diagrams describe the functions.

The control flow between actions of activities is irrelevant for functional architecture. It
is only needed in requirements analysis. Most relevant here are the actions themselves
and the object flow, which describes input and output objects of the action.

A more detailed description of modeling use cases with activities is provided, for
example, by [Wei08].

3.3 Modeling Functional Architecture

The activities of use cases from section 3.2 are a refinement of the functional
requirements. They are the key element of the behavioral view on the system. The
functional architecture belongs to the static view, which is underlined by the fact that we
do not need the control flows of activities. SysML provides a static view on activities
that hides the control flow. It is the function tree on a block definition diagram, in which
each node represents an activity (=functional element). The tree structure expresses the
functions’ call hierarchy; that means: a node will be executed in the context of its parent
node. This does not necessarily make the function tree a functional decomposition. The
SysML composition relationship is the connector in the tree. The roots of function trees
are the use cases. They are based on system functions from the actors’ point-of-view. A
more detailed description on modeling function trees with SysML is provided by
[Wei08]. An example is shown in figure 3.

The activities of the function trees can be grouped according to certain criteria. In
general, the result has a different structure than the underlying function trees. For the
first time, the function structure as a basis of the functional architecture comes into
existence.

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

In SysML, the function structure is represented in block defintion diagrams. Per
functional group, one functional element is modeled as a functional block, i.e. a standard
SysML block with a newly defined stereotype “Functional Block”. Operations of
functional blocks model the actual function, i.e. the input/output relationship between
objects that are the block’s input and output via its ports. As useful guideline, one can
define that each operation of a functional block should match a sub-function of the
corresponding functional group. Functional blocks can be described as parts of other
functional blocks via the composition relationship. This can be used to model the
decomposition of functional elements into sub-elements.

Functional blocks whose functions call each other are connected in the internal block
diagram via standard ports and flow ports – the former to model the flow of signals
[Ulr95] or information [Pat82], the latter to model flows of material, force or energy
[Pat82, Ulr95]. Connections between ports can be inferred partly from the object flows
of activity diagrams from section 3.2; in practice, however, internal block diagrams can
describe certain matter with a more clear visualization and provide a better overview
than activity diagrams – particularly in cases of objects flowing between functional
elements resulting from different branches of the function tree (in the hearing instrument
example of section 5, we illustrate this with the example of a gain change that is needed
in use case “Listen to Amplified Signal” and has its origin in use case “Adjust Volume”).

So far, we have described how to proceed. Inspired by [DB04], we summarize the
resulting information dependencies in figure 4. In addition to the previously said, the
figure shows: non-functional requirements can have an influence on the function
structure via architectural decisions. This is particularly relevant in the lower hierarchy
levels of the function structure.

4 Heuristics for Obtaining a Sensible Function Structure

It is impossible to group functions according to systematically or even automatically
applied criteria [Pat82]. Architecture combines “art” and technology: the creation of
functional architectures is an achievement of the system architect and requires thought.

Figure 3: Function Tree

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

Figure 4: Information Model

Heuristics can support the architect [MR02] if no procedure is proven to be the optimum
one, like in the context of this paper. In the following, we provide heuristics that help
obtaining a function structure by grouping activities of the function tree. The grouping
aims at functional groups that are “as independent as possible; that is […] with low
external complexity and high internal complexity” [MR02]. This makes the functional
architecture invariant to changes and facilitates deriving an effective physical
architecture from it.

Use grouping criteria of existing groups: A system is rarely developed completely
from scratch, but it is usually based on an existing system. The outline of existing system
documentation from prior art or similar systems can indicate possible ways of grouping
functions. Ideally, interviews with the system developers should be made to find out if
the grouping was useful in practice. This way, known structures will be created and team
members will find them intuitive to use. However, grouping criteria have to be re-
assessed with caution: they can be of technical rather than conceptual nature. A grouping
based on technical constraints is not desirable, because it will lead to a functional
architecture that contains implicit technological decisions, making it more difficult to
find alternative solution scenarios.

Abstract and secondary use cases define a functional group: The use case model
already reveals potential functional groups. An abstract use case represents
commonalities between several concrete use cases. Its functions can be assigned to one
functional group, either in order to complete it or in order to leave it open for further

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

assignment of functions from the concrete use cases. The modeling of abstract and
secondary use cases is covered by [Wei08].

One functional group takes the functions that are related to system actors:
Functions having a direct relationship with system actors are part of the system’s
input/output logic. Often they only have little in common with the actual system
functions that do the processing of the inputs and produce the outputs. In that case, they
are good candidates for a separate functional group.

Function calls imply cohesion: Functions call other functions, resulting in a network of
call relationships. Clusters in that network are potential functional groups. They can be
derived easily from function trees. The composition relationships in a function tree can
be represented as a matrix. Rows and columns represent the activities, and a marker is
placed in a matrix cell if the corresponding row activity calls the corresponding column
activity. Rows and columns have to be moved such that markers accumulate in distinct
parts of the matrix. The resulting clusters map to row and column activities that can
potentially be grouped into a functional group.

Functions that share data can be grouped: It can be assumed that two functions
belong to closely related domains if the output of one of them is the other’s input. This
connection can easily be found in the object flow of the activity diagrams. However
there can be an implicit control flow that is irrelevant here. Again, the function trees are
most suited for this heuristic: they can show the objects (data) of functions (see figure 3).

5 Example

Figure 5 gives an example by showing the functional architecture of a simplified hearing
instrument in a SysML representation. It is based on a much more elaborate functional
architecture, which has been re-used throughout multiple hearing instrument projects.

To keep the example simple, it has been assumed that a hearing instrument can only
amplify sound and apply volume changes. Already the use cases of figure 2 have been
based on this simplification. This ways the functional architecture from figure 5 matches
the use cases: The functional element “Adjust Volume” belongs to the use case of same
name.

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

Figure 5: Simplified functional architecture of a sample hearing instrument

The use case “Listen to Amplified Signal” is enabled by the functional element
“Amplify Sound”, which matches the function of same name that has been mentioned in
the introduction. This functional element does not only model amplification of sound,
but also the possibility to change gain, which is offered to the outside via an interface
and is in the given example beneficial for the hearing instrument user.

6 Moving into Implementation

A functional architecture itself cannot be implemented. Therefore a physical solution
providing the identified functions is needed before the architecture can be realized in a
system. Again, this solution ideally comes with a structured view, which we call
“physical architecture”. As an example, we show in figure 6 how a potential physical
architecture could look like if it was to realize the functional architecture from figure 5
on the basis of nowadays digital technology according to [PSH+04].

Possible procedures for realizing functions in a physical system have been described by
the literature ([Ulr95], [KMN+00], [BFN05], [Hit07], [Pat82]). System architects are
mainly interested in the allocation of elements in physical architecture by functional
elements (“functional-to-physical mapping” [Hit07]). This can be expressed in SysML
by means of an “allocate” relationship. The functional block “Amplify Sound” from
figure 5 thus has incoming “allocate” relationships from those physical blocks that work
together to provide the function “Amplify Sound”. In a typical hearing instrument
according to figure 6, this would e.g. be “allocate” relationships coming from the

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

elements “Microphone”, “Input Stage”, “Interconnection Network”, “ Filter 1”,
“Filter 2”, “Signal Processor”, “Output Stag” and “Loudspeaker”.

One functional architecture can map to different physical architectures. Figure 7
illustrates this in showing an alternative physical architecture of the sample hearing
instrument: it is based on outdated analog technology, but still matches the functional
architecture. The latter one thus does not only describe a modern device according to
figure 6, but also analog hearing instruments of the previous millennium. The example
shows: functional architectures can stay valid across multiple generations of technology.

Figure 6: Architecture Alternative of a Physical Architecture for implementing the

sample hearing instrument in modern digital technology, based on [PSH+04]

Figure 7: Architecture Alternative of Physical Architecture based on Analog Technology

This is an English translation of a German conference paper presented at
the 2010 conference of the German “Gesellschaft für Systems Engineering
e.V.”. Please cite this document as follows: “Lamm, J. G. and Weilkiens, T.,
Funktionale Architekturen in SysML. In M. Maurer and S.-O. Schulze (eds.), Tag
des Systems Engineering 2010, pp. 109–118. Carl Hanser Verlag, München,
Germany, November 2010. English translation by J. Lamm.“

Copyrighted material. A transfer agreement with Gesellschaft für Systems Engineering
has been made for the German source of this translation. This translation is provided
with kind permission of Gesellschaft für Systems Engineering. When using this material,
always make reference to “Tag des Systems Engineering 2010” (see box in header).

©

7 Conclusion

We have shown an approach for deriving functional architectures from requirements and
use cases and modeling them in SysML. Using functional architecture will lead to re-
usable models, which can support multiple generations of technology. We have
exemplified this in the domain of hearing instrument, with a simplified functional
architecture, which is valid for both systems based on outdated analog technology and
the ones using nowadays technology. While the functional elements of the system have a
long life cycle, the physical architecture of the system will be developed further with the
evolution of technology and will over time improve the implementation of the functions
the user is interested in.

Acknowledgements

We like to thank Mr. Matthias Dänzer, Bernafon AG, as well as the TdSE 2010
reviewers for their feedback and No Magic, Inc. for supporting this paper with additional
licenses of the modeling tool.

References

[Ack81] Ackoff, R. L.: Creating the Corporate Future: Plan or be Planned For. Wiley, 1981.
[BFN05] Blume, H.; Feldkaemper, H. T.; Noll, T. G.: Model-based exploration of the design

space for heterogeneous systems on chip. Journal of VLSI Signal Processing,
40:19-34, 2005.

[DB04] Daniels, J.; Bahill, T.: The hybrid process that combines traditional requirements and
use cases. Systems Engineering, 7(4):303–319, 2004.

[Eis05] Eisner, H.: Managing complex systems. Wiley, 2005.
[Hit07] Hitchins, D. K.: Systems Engineering. John Wiley & Sons, 2007.
[KMN+00] Keutzer, K.; Malik, S.; Newton, A. R.; Rabaey, J. M.; Sangiovanni-Vincentelli, A.:

System-level design: Orthogonalization of concerns and platform-based design. IEEE
Trans. Computer-aided Design of Integr. Circuits and Syst., 19(12):1523-1543, 2000.

[MR02] Maier, M. W.; Rechtin, E.: The Art of Systems Architecting. CRC Press, 2002.
[OMG10] Object Management Group (OMG): OMG Systems Modeling Language (OMG

SysML™) Version 1.2. OMG Document Number formal/2010-06-01, 2010.
[Pat82] Patzak, G.: Systemtechnik – Planung komplexer innovativer Systeme. Springer, 1982.
[PBFG07] Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H.: Engineering Design. Springer, 2007.
[PSH+04] Paker, Ö.; Sparsø, J.; Haandbæk, N.; Isager, M.; Nielsen, L. S.: A Low-Power

Heterogeneous Multiprocessor Architecture for Audio Signal Processing. Journal of
VLSI Signal Processing, 37: 95-110, 2004.

[Spi02] Spielberg, D. E.: Methodik zur Konzeptfindung basierend auf technischen
Kompetenzen. Dissertation, RWTH Aachen, Shaker-Verlag, 2002.

[Ulr95] Ulrich, K.: The role of product architecture in the manufacturing firm. Research
Policy, 24:419 – 440, 1995.

[Wei08] Weilkiens, T.: Systems Engineering mit SysML / UML. dpunkt.verlag, 2008.
[YW07] Yassine, A. A.; Wissmann L. A.: The Implications of Product Architecture on the

Firm, Systems Engineering, 10(2):118-137, 2007.

