
Arcadia Description Diagrams SYSMOD Description Diagrams
Transition From

Operational Activities

This step enables the transition of Operational

Activities to System Functions. It also provides

tracebility matrices mapping the Operational

Activities to System Functions and the automated

updating in case of changes.

For matrices example see Requirements below As SYSMOD does not seperate between

different levels of analysis, a transition is not

explicitely included in the method. Yet SYSMOD

using SysML enables traceability and

traceability matrices between elements.

Functions for automating transitions and

generating traceability matrices are depending

on the modeling tool in use and are not

considered any further.

For matrices example see Requirements below

Define Actors, Missions

and Capabilities

This step focuses on defining the actors of the

system (who interacts with the system especially

via interfaces) and their goals.

Main concepts:

- Missions

- Capabilities

- Actors

[MCB] System Missions and/ or Capability Diagram

It allows to model System Missions and Capabilities and their

relationships as well as their connections to the system actors. It is

similar to the SysML Use Case Diagram, including the include, extend

and generalization relationship.

Describe the System

Objectives

Identify Stakeholders

Identify and Model the

System Use Cases and

System Processes

SYSMOD also captures high-level goals and

needs. It adds additional elements for

describing stakeholders (that don't necessarily

have to interact with the system but have other

interests in the system).

Main Concepts:

- System Objectives

- System Use and Continuous Use Cases

- System Processes

- Stakeholders

=> Details Use Case concept and adds System

Processes

=> SYSMOD describes actors and their goals and

adds stakeholders and their objectives

[req] System Objectives (+trace relationship to Stakeholders)

[uc] System Use Cases (one per actor)

Main Concepts:

- Actors

- System

[CSA] Contextual System Actors

It is used to have a high-level overview of the system and the system

actors.

Analyse the Problem (Is

primarily done outside the

model. But the results are

captured in the model)

Describe the System Idea

Identify System Context

Describe Base Architecture

SYSMOD adds additional and more specific

information and model elements to describe

how the system is embedded in its environment

and what are the technical and architecture

decisions preset at project start.

Main concepts:

- System with properties SystemIdea and

ProblemStatement

- Base Architecture

- System Context with Actors (User, External

System and Environmental Effects)

=> SYSMOD provides a wide variety of structural

specifications in the analysis process

=> But freedom to choose how detailed the

structural description can get (For base

archtiecture: from beermat to [bdd]. For system

context: from [bdd] and [uc] high-level system

context to [ibd] detailed system context)

[bdd] System with Problem Statement and System Idea

[bdd] and [ibd] for Base Architecture and System Context

oose Innovative Informatik eG │ Schulterblatt 36 │ D-20357 Hamburg │ +49(0)40-414250-0 │ www.oose.com page 1

Refine System Functions,

describe functional

exchanges

In this step the focus is on refining the system

functions, by

- enriching and detailing the functional breakdown

by adding new system functions

- and describing data flows and functional chains.

Main concepts:

- Functions

- Functional Exchanges

- Function Ports

- Data Flow (and Control Flow)

[SFCD] System Functional Chain

Decribes a path/ ordered set of functions and functional exchanges

that link them.

[FS] Functional Scenarios

Set of functions and the exchanges that link them on a temproal axis.

Model Use Case Activites In Model Use Case Activites the functional

decomposition of the System Use Cases is

specified. This includes defining the sequence of

execution and the object flow between the

system functions (activities and actions).

Main Concepts:

- Activity, CallBehaviorAction, Action

- Activity Parameter Node, Object Node, Pin

- Object and Control Flow

=> Modelling scenarios: SysML does not allow

to use activities and actions in sequence

diagrams. The temporal sequence of execution

can be modelled by using the control flow

[act] Activity Diagram (one per System Use Case)

The Activity Diagram uses similar concepts like the Arcadia [SFCD],

[SFBD], [SDFB] & [SAB] (for [SAB], see Allocate System Functions to

System Actors).

It sets functions into an order of execution, allows a breakdown into

activities, call behavior actions and actions and the allocation to

structural elements.

[SFBD] System Functional Breakdown

Describes a functional hierarchy. Subfunctions can be grouped into a

mother function. It is not a strong structural decomposition that

forms a synthetic representation. Only the leaf functions (without

subfunction) carry the functional description.

[SDFB] System Data Flow

Dataflow describes functional dependencies between functions

(funtional exchanges connected to function ports).

[bdd] Activity Tree (Use Case Activity Breakdown)

Activity Diagrams do not allow to model the whole functional hierarchy

in one diagram due to its encapsulation mechanism. Using the [bdd]

allows modelling a tree that depicts a call hierarchy of functions (a

function is a sub-function of another function if that function calls it. It is

an ownership of execution).

oose Innovative Informatik eG │ Schulterblatt 36 │ D-20357 Hamburg │ +49(0)40-414250-0 │ www.oose.com page 2

Allocate System

Functions to System and

Actors

In this step the functions are allocated to the

system and actors. It is possible to deduce

component exchanges that implement functional

exchanges and to model scenarios describing

functional exchanges between the system and

actors.

Main Concepts:

- System

- Actor

- Functions

- Functional and Behavioral Exchanges, Physical

Links

[SAB] System Architecture

[ES] Exchange Scenario

[act] Activity Diagram (see above)

[seq] Scenarios

It is possible to use Sequence Diagrams to model exchanges between

the system and the system actors. But in SYSMOD Sequence Diagrams

are primarily used in the Architecture Process (see Revise an

Architecture with Scenarios).

[act] Use Case Activities

Additionally SYSMOD uses Activity Diagrams to describe exchanges

between the system and the actors.

=> In difference to Arcadias Exchange Scenario SYSMOD specifys the

input and output between the system and the system context but not

the detailed interaction between the system and the actors in form of

functions or activities. (see diagramm at Model Use Case Activites)

Define Interfaces and

describe Interface

Scenarios

In this step the interfaces of the system and the

actors are detailed. Additional scenarios are

described to specify the dynamic behavior of the

system.

Main Concepts:

- System and Actor

- Interface, Port, Exchange Item

[CDI] Contextual Detailed Interface

[CEI] Contextual External Interface

[IS] Interface Scenario (see other scenario diagrams)

Identify the System Context SYSMOD using SysML uses the [bdd], [uc] or

[ibd] to define interfaces. For example in the

System Context or Base Architecture (see

above) interfaces can be identified and then be

defined by different ports (full and proxy), the

SysML InterfaceBlock or the SYSMOD

stereotype <<userInterface>> . (See also

Interface and data model concepts)

Main concepts:

- System Context, Base Architecture

- Ports, Item flow, ValueProperties

InterfaceBlock, <<userInterface>>

see System Context and Base Architecture

oose Innovative Informatik eG │ Schulterblatt 36 │ D-20357 Hamburg │ +49(0)40-414250-0 │ www.oose.com page 3

Transverse Modeling In this step the state machine, the domain

elements and the actually exchanged data

between components is specified.

The state machine can capture modes and states

of the system, components, actors and classes

(data).

The domain knowledge describes high-level

semantics related to the domain.

Main Concepts:

- Modes & States

- Classes

- Interfaces, Exchange Items,

- Types & Values

[MSM] Mode State Machine

[CBD] Class Diagram Blank - Domain Elements

[CBD] Class Diagram Blank - Domain Elements

Specify System States

Model the Domain

Knowledge

In SYSMOD state machines are primarily used in

the Architecture Process for describing the

states of the system or the systems parts and

the transition of states. But state machines can

also be used in the Analysis Process, e.g. to

refine requirements.

The domain knowledge defines terms of the

domain from the perspective of the system. The

domain knowledge is captured in domain

objects and can be differentiated into context

objects (exchange between system and actors)

and system objects (only used inside the

system). In SYSMOD the domain knowledge is

also called concept or data model.

Main Concepts:

- States

- Block stereotype <<DomainBlock>>

- Value Types

[stm] State Machine

[bdd] Domain Knowledge

[bdd] Domain Value Types

Requirements Arcadia recommends to use the model itself for

expressing requirements (and also feared events)

as most of the needs can be fomalized by a model

(for example functions or scenarios as functional

requirements or specific elements of functional

chains for non-functional requirements).

In cases where textual requirements are needed

Capella provides different types of requirements,

tables and matrices. Requirements can also be

grouped into requirement packages. Linking

between requirements and other model elements

is also possible by using the requirements

viewpoint.

Main Concepts

- Tables and matrices

- Requirements: System Functional (Interface),

System Non Functional (Interface), User

Requirements Table

Requirements - Functions Matrix

Model Requirements

and Risks

SYSMOD recommends to use tables and

matrices to capture requirements in textual

form. But it also provides the

<<extendedRequirement>> stereotype that can

be applied to any model element to represent a

requirement.

The <<risk>> stereotype can be used for

modelling risks. For specific performance

requirements in the parametric-context

<<PerformanceConstraintRequirement>> can

be used.

Main Concepts:

- Tables & matrices

- Requirements Diagram

- Stereotype <<extendedRequirement>> with

non-functional requirements (e.g Usability,

Business, Reliability, etc.) and the functional

requirement

- Stereotype <<risk>>

- SysML and SYSMOD-specific relationships:

(Weighted)Verify, (Weighted)Satisfy, etc.

- Parametric Diagram + Stereotype

<<PerformanceConstraintRequirement>>

Requirements Table

[req] Requirements diagram

[par] Parametric diagram

Additional steps not explicitely mentioned in the Capella System Analysis Activity Browser

oose Innovative Informatik eG │ Schulterblatt 36 │ D-20357 Hamburg │ +49(0)40-414250-0 │ www.oose.com page 4

Test Cases Unfortunately I couldn't find sufficient materials

and resources to give a detailed view on how Test

Cases are used in Capella. This is why I only give a

brief introduction. Arcadia uses Test Case for IVV

(Integration, Verification & Validation).

A test case is built from scenarios or functional

chains to verify a given system integration. They

can be grouped into a test campaign.

Main Concept:

- Test Case

- Test Campaign

Specify Test Cases SYSMOD also uses the concept of Test Cases.

Test Cases specify how to verify and validate

that the system satisfies the requirements.

SYSMOD adds the stereotypes

<<ExtendedTestCase>> (additional properties),

<<systemTestCase>> (testing the real physical

system) & <<modelTestCase>> (testing the

model) to the SysML Test Case.

Main Concepts:

- Test Case + SYSMOD stereotypes

- Tables & matrices

- Use Case and Activity Diagrams

[table]

[uc]

[act]

oose Innovative Informatik eG │ Schulterblatt 36 │ D-20357 Hamburg │ +49(0)40-414250-0 │ www.oose.com page 5

